Interference Between Units in Randomized Experiments

نویسنده

  • Paul R. ROSENBAUM
چکیده

In a randomized experiment comparing two treatments, there is interference between units if applying the treatment to one unit may affect other units. Interference implies that treatment effects are not comparisons of two potential responses that a unit may exhibit, one under treatment and the other under control, but instead are inherently more complex. Interference is common in social settings where people communicate, compete, or spread disease; in studies that treat one part of an organism using a symmetrical part as control; in studies that apply different treatments to the same organism at different times; and in many other situations. Available statistical tools are limited. For instance, Fisher’s sharp null hypothesis of no treatment effect implicitly entails no interference, and so his randomization test may be used to test no effect, but conventional ways of inverting the test to obtain confidence intervals, say for an additive effect, are not applicable with interference. Another commonly used approach assumes that interference is of a simple parametric form confined to units that are near one another in time or space; this is useful when applicable but is of little use when interference may be widespread and of uncertain form. Exact, nonparametric methods are developed for inverting randomization tests to obtain confidence intervals for magnitudes of effect assuming nothing at all about the structure of the interference between units. The limitations of these methods are discussed. To illustrate the general approach, two simple methods and two simple empirical examples are discussed. Extension to randomization based covariance adjustment is briefly described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Monotone Treatment Effects in Network Experiments

Abstract Randomized experiments on social networks pose statistical challenges, due to the possibility of interference between units. We propose new methods for estimating attributable treatment effects in such settings. The methods do not require partial interference, but instead require an identifying assumption that is similar to requiring nonnegative treatment effects. Network or spatial in...

متن کامل

ESTIMATING AVERAGE CAUSAL EFFECTS UNDER GENERAL INTERFERENCE, WITH APPLICATION TO A SOCIAL NETWORK EXPERIMENT By

This paper presents a randomization-based framework for estimating causal effects under interference between units, motivated by challenges that arise in analyzing experiments on social networks. The framework integrates three components: (i) an experimental design that defines the probability distribution of treatment assignments, (ii) a mapping that relates experimental treatment assignments ...

متن کامل

Design and analysis of experiments in networks: Reducing bias from interference

Estimating the effects of interventions in networks is complicated when the units are interacting, such that the outcomes for one unit may depend on the treatment assignment and behavior of many or all other units (i.e., there is interference). When most or all units are in a single connected component, it is impossible to directly experimentally compare outcomes under two or more global treatm...

متن کامل

Design andAnalysis of Experiments inNetworks: ReducingBias from Interference

Estimating the effects of interventions in networks is complicated due to interference, such that the outcomes for one experimental unit may depend on the treatment assignments of other units. Familiar statistical formalism, experimental designs, and analysis methods assume the absence of this interference, and result in biased estimates of causal effectswhen it exists.While some assumptions ca...

متن کامل

Testing for arbitrary interference on experimentation platforms∗

Experimentation platforms are essential components of modern large IT companies, as they are used to carry out a large number of randomized experiments daily. On such platforms, the classic assumption of no interference among users—that is, the fact that the outcome of a user does not depend on the treatment assigned to other users—is rarely tenable. Here, we introduce an experimental design st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007